Imaging radar is an application of radar which is used to create two-dimensional , typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.
Digital radar images are composed of many dots. Each pixel in the radar image represents the radar backscatter for that area on the ground (terrain return): brighter areas represent high backscatter, darker areas represents low backscatter.
The traditional application of radar is to Radar display of typically highly reflective objects (such as aircraft or ) by sending out a radiowave signal, and then detecting the direction and delay of the reflected signal. Imaging radar on the other hand attempts to form an image of one object (e.g. a landscape) by furthermore registering the intensity of the reflected signal to determine the amount of scattering. The registered electromagnetic scattering is then mapped onto a two-dimensional plane, with points with a higher reflectivity getting assigned usually a brighter color, thus creating an image.
Several techniques have evolved to do this. Generally they take advantage of the Doppler effect caused by the rotation or other motion of the object and by the changing view of the object brought about by the relative motion between the object and the back-scatter that is perceived by the radar of the object (typically, a plane) flying over the earth. Through recent improvements of the techniques, radar imaging is getting more accurate. Imaging radar has been used to map the Earth, other planets, asteroids, other celestial objects and to categorize targets for military systems.
Imaging radar has several advantages. It can operate in the presence of obstacles that obscure the target, and can penetrate ground (sand), water, or walls.
Common Methods for Time-Frequency Analysis:
| Short-time Fourier transform | Decomposes the radar signal into time-localized frequency components using short overlapping windows. | Easy to implement and interpret. | Trade-off between time and frequency resolution. |
| Wavelet Transform | Uses wavelet functions to decompose radar signals into time-scale (frequency) representations. | Multi-resolution capability; suitable for non-stationary signals. | Requires careful selection of wavelet basis. |
| Hilbert-Huang Transform | Decomposes signals into Intrinsic Mode Functions (IMFs) for instantaneous frequency analysis. | Well-suited for non-linear, non-stationary radar signals. | Computationally intensive and sensitive to noise. |
| Wigner distribution function | Provides high-resolution time-frequency representation by analyzing signal energy distribution. | High resolution in both time and frequency domains. | Prone to cross-term interference in multi-component signals. |
Usually the reflected pulse will be arranged in the order of return time from the targets, which corresponds to the range direction scanning.
The resolution in the range direction depends on the pulse width. The resolution in the azimuth direction is identical to the multiplication of beam width and the distance to a target.
Laser radar is used for multi-dimensional imaging and information gathering. In all information gathering modes, lasers that transmit in the eye-safe region are required as well as sensitive receivers at these wavelengths.
3-D imaging requires the capacity to measure the range to the first scatter within every pixel. Hence, an array of range counters is needed. A monolithic approach to an array of range counters is being developed. This technology must be coupled with highly sensitive detectors of eye-safe wavelengths.
To measure Doppler information requires a different type of detection scheme than is used for spatial imaging. The returned laser energy must be mixed with a local oscillator in a heterodyne system to allow extraction of the Doppler shift.
SARs produce a two-dimensional (2-D) image. One dimension in the image is called range and is a measure of the "line-of-sight" distance from the radar to the object. Range is determined by measuring the time from transmission of a pulse to receiving the echo from a target. Also, range resolution is determined by the transmitted pulse width. The other dimension is called azimuth and is perpendicular to range. The ability of SAR to produce relatively fine azimuth resolution makes it different from other radars. To obtain fine azimuth resolution, a physically large antenna is needed to focus the transmitted and received energy into a sharp beam. The sharpness of the beam defines the azimuth resolution. An airborne radar could collect data while flying this distance and process the data as if it came from a physically long antenna. The distance the aircraft flies in synthesizing the antenna is known as the synthetic aperture. A narrow synthetic beam width results from the relatively long synthetic aperture, which gets finer resolution than a smaller physical antenna.http://www.sandia.gov/radar/what_is_sar/index.html
An ISAR system consists of a stationary radar antenna and a target scene that is undergoing some motion. ISAR is theoretically equivalent to SAR in that high-azimuth resolution is achieved via relative motion between the sensor and object, yet the ISAR moving target scene is usually made up of non cooperative objects.
Algorithms with more complex schemes for motion error correction are needed for ISAR imaging than those needed in SAR. ISAR technology uses the movement of the target rather than the emitter to make the synthetic aperture. ISAR radars are commonly used on vessels or aircraft and can provide a radar image of sufficient quality for target recognition. The ISAR image is often adequate to discriminate between various missiles, military aircraft, and civilian aircraft.
Monopulse radar 3-D imaging can obtain the 3 views of 3-D objects by using any two of the three parameters obtained from the azimuth difference beam, elevation difference beam and range measurement, which means the views of front, top and side can be azimuth-elevation, azimuth-range and elevation-range, respectively.
Monopulse imaging generally adapts to near-range targets, and the image obtained by monopulse radar 3-D imaging is the physical image which is consistent with the real size of the object.
|
|